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supergravity with non-vanishing five-form flux and AdS2 solutions of D = 11 supergravity

with electric four-form flux. The former are dual to two-dimensional SCFTs with (0, 2) su-
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identity or the equation of motion of the field strengths in the supergravity theories. We

construct infinite new classes of explicit examples and for some of the type IIB solutions

determine the central charge of the dual SCFTs. The type IIB solutions with non-vanishing

three-form flux that we construct include a two-torus, and after two T-dualities and an

S-duality, we obtain new AdS3 solutions with only the NS fields being non-trivial.
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1. Introduction

An interesting class of supersymmetric AdS3 solutions of type IIB supergravity with non-

vanishing five-form flux and dual to (0, 2) SCFTs in d = 2 were analysed in [1]. Similarly,

a class of AdS2 solutions of D = 11 supergravity with electric four-form flux and dual

to superconformal quantum mechanics with two supercharges were analysed in [2]. It is

remarkable that the geometries of the corresponding internal seven and nine-dimensional
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spaces have a similar structure. In particular, they both have a Killing vector (dual to an

R-symmetry in the corresponding SCFT) which locally defines a foliation, and the metrics

are completely determined by a Kähler metric on the corresponding six or eight-dimensional

leaves. In both cases, the local Kähler metric satisfies the same differential equation

�R− 1

2
R2 +RijRij = 0 (1.1)

where Rij and R are the Ricci tensor and Ricci scalar for the Kähler metric. These

2n + 1 dimensional geometries, with n = 3, 4, were further investigated in [3], which also

generalised them to all n. It was shown that the 2n+ 2 dimensional cone geometries over

these spaces admit certain Killing spinors that define an SU(n+1) structure with particular

intrinsic torsion that was determined in [3].

This geometry has striking similarities with Sasaki-Einstein (SE) geometry. Recall

that a five-dimensional SE manifold SE5 gives rise to a supersymmetric type IIB AdS5 ×
SE5 solution with non-vanishing five-form flux, while a seven-dimensional SE manifold

SE7 gives rise to a AdS4 × SE7 solution of D = 11 supergravity with electric four-form

flux. All SE spaces have a Killing vector, which locally defines a foliation, and the SE

metric is completely determined by a Kähler-Einstein metric on the corresponding leaves.

Furthermore, the 2n+2 dimensional cone geometries over the SE spaces are Calabi-Yau i.e.

they admit covariantly constant spinors that define an SU(n+ 1) structure with vanishing

intrinsic torsion (i.e. the metric has SU(n+ 1) holonomy).

The AdS5×SE5 and AdS4×SE7 solutions are the near horizon limits of more general

supergravity solutions that describe D3-branes and M2-branes sitting at the apex of the

Calabi-Yau three and four-fold cones, respectively. In these more general solutions, only the

five-form flux and electric four-form flux are non-trivial, and the solutions are determined

by a harmonic function on the Calabi-Yau space. An interesting further generalisation for

the type IIB case, is to consider any Calabi-Yau three fold and to switch on imaginary

self-dual harmonic three form flux. One finds that this solution preserves the same amount

of supersymmetry. Furthermore the Bianchi identity for the five-form, modified by Chern-

Simons or “transgression” terms,

dF5 =
i

2
G ∧G∗ (1.2)

where G is a complex three-form which contains the NS-NS and R-R three-forms, implies

that the solutions are determined by a function that satisfies a Laplace equation with a

source term. Similarly, for D = 11 supergravity one can consider an arbitrary Calabi-Yau

four-fold and switch on a harmonic self-dual four-form. Now it is the equation of motion

for the three-form potential with its transgression terms,

d ∗11 G4 +
1

2
G4 ∧G4 = 0 (1.3)

which is playing a key role in the solution. Switching on the additional fluxes in these

type IIB and D = 11 solutions necessarily breaks the conformal symmetry. A prominent

example of such solutions is the Klebanov-Strassler solution of type IIB [4] (see also [5, 6]),
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which is constructed using the deformed conifold metric. A more general analysis of these

kinds of solutions can be found in [7].

One of the main aims of this paper is to show that we can similarly generalise the

classes of type IIB solutions considered in [1] and the D = 11 solutions considered in [2]

to include three-form flux and magnetic four-form flux, respectively. The central idea is

to switch on such fluxes on the six and eight dimensional Kähler spaces, respectively. We

will show that this can be done in a way that maintains the AdS3 and AdS2 factors, and

hence the dual conformal symmetry (in contrast to the examples discussed above), and also

preserves the same amount of supersymmetry. We find that the solutions are still, locally,

specified by a Kähler metric but (1.1) is modified by a term involving the new activated

fluxes. We will also construct rich new classes of explicit solutions by following a similar

analysis to that of [8].

The plan of the rest of the paper is as follows. We will summarise the general classes

of AdS3 solutions of type IIB and AdS2 solutions of D = 11 in section 2. We have left

some details of the derivations, which are very similar to those in [1] and [2], to appendix

A. We will also briefly interrupt the main narrative to explain how the solutions can be

analytically continued so that the AdS factors are replaced by spheres. This gives rise to

new general classes of 1/8 BPS bubble solutions generalising those discussed in [8] (1/2

BPS bubble solutions were first analysed in [9], and other studies of general classes of

bubble solutions preserving various amounts of supersymmetry in type IIB and D = 11

supergravity have appeared in [10]–[23]).

In section 3 we will construct explicit AdS solutions by taking the six and eight di-

mensional Kähler metrics to be products of two-dimensional Kähler-Einstein (KE) spaces.

For type IIB we will first analyse the global properties of the local solutions with van-

ishing three-form flux that were found in [8] and calculate the central charge of the dual

CFTs. These AdS3 solutions are labelled by a rational number s/t ∈ [−1/2, 0) and an

integer N fixing the five-form flux. The topology of the internal seven-manifold is a certain

U(1) bundle over a product of two two-spheres and a Riemann surface with genus greater

than one. We then consider solutions with non-zero three-form flux by taking one of the

Kähler-Einstein factors to be a two-torus. We find that the two other KE spaces must be

spheres. After two T-dualities we find that the solutions turn out to be the well known

AdS3 ×S3 ×S3 ×S1 solutions of type IIB supergravity (see [24 – 27]). We conclude section

3 with a similar construction of explicit AdS2 solutions of D = 11 with non-vanishing

magnetic four-form flux.

In sections 4 and 5 we will present a different construction of local six and eight

dimensional Kähler metrics, using fibrations over KE spaces, generalising the constructions

in [8] (see also [28]). We have recorded some details in appendices C and D, respectively.

For type IIB we will consider the product of T 2 with a two-dimensional fibration over an

S2. This leads to infinite new explicit examples of AdS3 solutions of type IIB supergravity

with the internal seven dimensional space having topology S3 × S2 × T 2 and the metric

labelled by a pair of positive relatively prime integers p, q. When the type IIB three-flux is

vanishing we show that demanding that the five-form is properly quantised implies that as

solutions of type IIB string theory they depend on two more integers M,N which fix the
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five-form flux and the size of the T 2. For these solutions we calculate the central charge

of the dual CFTs.1 We also show that after two T-dualities the solutions are mapped to

type IIB AdS3 solutions with non-vanishing dilaton and RR three-form: after a further

S-duality only NS fields are non-zero.

Section 5 carries out similar constructions of local eight dimensional Kähler metrics

which are the product of T 2 with a two-dimensional fibration over a four dimensional KE

space with positive curvature. This gives rise to infinite classes of AdS2 solutions with

non-vanishing magnetic four-form flux. Section 6 briefly concludes.

2. AdS solutions through transgression

We first consider a general class of supersymmetric AdS3 solutions of type IIB supergravity

that are dual to (0, 2) SCFTs in d = 2. The metric and the self-dual five-form take the form

ds2 = e2A
[

ds2 (AdS3) + ds2(Y7)
]

F5 = (1 + ∗10)V ol(AdS3) ∧ F2 (2.1)

where F2 is a two-form on Y7. The dilaton and axion are constant and for simplicity we

set them to zero. We also demand that the complex three-form flux, G, which contains the

NS-NS and R-R three-form field strengths, is a three-form on Y7.

As we show in appendix A, by following the analysis of [1], demanding that this is a su-

persymmetric solution to the equations of motion, preserving supersymmetry as described

in the appendix, leads to the following local description. The metric can be written

ds2(Y7) =
1

4
(dz + P )2 + e−4Ads26 (2.2)

where ∂z is a Killing vector, ds26 is a Kähler metric and dP is the Ricci form for ds26. The

warp factor is given by

e−4A =
1

8
R (2.3)

where R is the Ricci scalar for ds26 and we thus need to demand that R > 0. The two-form

F2 appearing in the five-form can be written

F2 = 2J − 1

2
d
[

e4A (dz + P )
]

(2.4)

where J is the Kähler form for ds26.

So far, this is exactly the same as when the three-form flux vanishes [1]. However,

further analysis shows that we can switch on the three-form G, provided that G is a closed,

(1, 2) and primitive three-form on the Kähler space. In particular G must be imaginary

self-dual, ∗6G = iG, and harmonic. Furthermore, the Bianchi identity for the five-form

with its transgression terms (1.2), implies that the Kähler metric ds26 must satisfy

�R− 1

2
R2 +RijRij +

2

3
GijkG∗

ijk = 0 (2.5)

1The corresponding analysis for the case when the three-form flux is non-vanishing will be determined

in [29].
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which is the key equation generalising (1.1).

We now consider a general class of supersymmetric AdS2 solutions of D = 11 super-

gravity that are dual to superconformal quantum mechanics with two supercharges. The

metric and the four-form are given by

ds2 = e2A
[

ds2 (AdS2) + ds2(Y9)
]

G4 = Vol(AdS2) ∧ F2 + F4 (2.6)

where F2 is a two-form on Y9 and F4 is a four-form on Y9. This generalises the class of

solutions studied in [2] which had F4 = 0 i.e. purely electric fluxes.

As we show in appendix A, now following the analysis of [2], demanding that this

is a supersymmetric solution to the equations of motion, preserving supersymmetry as

described in the appendix, leads to the following local description. The metric can be

written

ds2(Y9) = (dz + P )2 + e−3Ads28 (2.7)

where ∂z is a Killing vector, ds28 is a Kähler metric and dP is the Ricci form for ds28. The

warp factor is given by

e−3A =
1

2
R (2.8)

where R is the Ricci scalar for ds28 and so we demand R > 0. The two-form F2 appearing

in the four-form can be written

F2 = −J + d
[

e3A (dz + P )
]

(2.9)

where J is the Kähler form for ds28. This is exactly as in the case of purely electric four-

form flux [2]. We now find that we can switch on F4 provided that it is a closed, (2, 2) and

primitive four-form on the Kähler space. In particular F4 must be self-dual and harmonic.

Furthermore, the equation of motion for the four-form with its transgression terms (1.3)

implies that the Kähler metric ds28 must now satisfy

�R− 1

2
R2 +RijRij +

1

4!
F ijkl

4 F4ijkl = 0. (2.10)

In the special case that the eight-dimensional Kähler metric ds28 contains a T 2 factor,

we can dimensionally reduce the D = 11 solution on one leg of the T 2 and then T-dualise on

the other leg, to obtain a type IIB solution. In the case that F4 = 0, it was shown in [8] that

the resulting type IIB solution is in fact the AdS3 solution with vanishing three-form flux.

There is a simple generalisation to non-vanishing F4. Decompose the eight-dimensional

Kähler form as

J8 = J6 + du1 ∧ du2 (2.11)

where u1, u2 are coordinates on the T 2. Suppose we can write the (2, 2) four form as

F4 = iG ∧
(

du1 + idu2
)

− iG∗ ∧
(

du1 − idu2
)

(2.12)

where G is a closed primitive (1, 2) form in six-dimensions (i.e. we are asuuming that there

is no term involving the volume form of the two torus, du1 ∧ du2). If we dimensionally

reduce on the u2 direction and then T-dualise on the u1 direction we find that the D = 11

AdS2 solution is transformed into the type IIB AdS3 solution.

– 5 –



J
H
E
P
0
9
(
2
0
0
8
)
0
2
1

2.1 Bubble solutions

In subsequent sections we will find explicit examples of the AdS3 and AdS2 solutions just

described. Before doing that we pause to briefly comment on how the above classes of solu-

tions can be analytically continued so that the AdS factors are replaced with spheres. These

“bubble” solutions preserve 1/8 of the supersymmetry and generalise those discussed in [8].

For the type IIB case, the metric is given by

ds2 = e2A

[

−1

4
(dt+ P )2 + ds2

(

S3
)

+ e−4Ads26

]

(2.13)

where ∂t is a Killing vector, ds26 is again a Kähler metric and dP is the Ricci form for ds26.

The warp factor is given by

e−4A = −1

8
R (2.14)

where R is the Ricci scalar for ds26 and so now we want R < 0. The five-form flux is given by

F5 = (1 + ∗10)V ol(S
3) ∧ F2 (2.15)

where

F2 = 2J +
1

2
d
[

e4A (dt + P )
]

(2.16)

and J is the Kähler form for ds26. The three-form G is again a closed, (1, 2) and primitive

three-form on the Kähler space. Finally the master equation reads

�R− 1

2
R2 +RijRij −

2

3
GijkG∗

ijk = 0. (2.17)

For the D = 11 case, the metric is given by

ds2 = e2A
[

− (dt+ P )2 + ds2(S2) + e−3Ads28

]

(2.18)

where ∂t is a Killing vector, ds28 is a Kähler metric and dP is the Ricci form for ds28. The

warp factor is given by

e−3A = −1

2
R (2.19)

where R is the Ricci scalar for ds28 and we demand R < 0. The four-form flux is given by

G4 = V ol(S2) ∧ F2 + F4 (2.20)

where

F2 = −J − d
[

e3A (dt + P )
]

(2.21)

and J is the Kähler form for ds28. F4 is again a closed, (2, 2) and primitive four-form on

the Kähler space. Finally, the master equation is now

�R− 1

2
R2 +RijRij −

1

4!
F ijkl

4 F4ijkl = 0. (2.22)

– 6 –
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3. Product of KE spaces

In this section we will explore solutions for which the Kähler metrics ds26 and ds28 appearing

in (2.2) and (2.7), respectively, are simply the product of a set of two-dimensional Kähler-

Einstein metrics

ds22n =

n
∑

i=1

ds2(KE
(i)
2 ) (3.1)

where ds2(KE
(i)
2 ) is a two-dimensional Kähler-Einstein metric, i.e. locally proportional to

the standard metric on S2, T 2 or H2. For the latter case, we can also take a quotient H2/Γ

to get a Riemann surface with genus greater than one. The metric ds22n is normalised so

that the Ricci form is given by

R =

n
∑

i=1

Ri =

n
∑

i=1

liJi (3.2)

where Ri and Ji are the Ricci and Kähler forms of the ds2(KE
(i)
2 ) metrics, respectively,

and li is zero, positive or negative depending on whether the metric is locally that on T 2,

S2 or H2, respectively. We also have P =
∑

i Pi with dPi = Ri and the Ricci scalar is

R = 2
∑n

i=1 li. Note that in the special case that two of the li are equal, say l1 = l2,

the analysis can be simply extended to cover the case when the product KE
(1)
2 × KE

(2)
2

is replaced with a more general four-dimensional Kähler-Einstein manifold, KE4. Similar

generalisations are possible if more of the li are equal. Finally, it will be useful to recall

that if the ith KE space, Σgi
, is a Riemann surface of genus gi, then

1

2π

∫

Σgi

Ri = 2(1 − gi) . (3.3)

3.1 Type IIB

For this case, the metric ds2(Y7) appearing in (2.1) is given by

1

L2
ds2(Y7) =

1

4
(dz + P )2 + e−4A

[

3
∑

i=1

ds2(KE
(i)
2 )

]

(3.4)

where we have introduced an overall length scale L, and the warp factor is given by

e−4A =
1

4
(l1 + l2 + l3) . (3.5)

Writing the five-form flux as

F5 = AdS3 ∧ F2 + ω5 (3.6)

we have

1

L4
F2 =

2

l1 + l2 + l3
[(l2 + l3)J1 + (l1 + l3)J2 + (l1 + l2)J3]

1

L4
ω5 =

1

4
[(l1 + l2)J1 ∧ J2 + (l1 + l3)J1 ∧ J3 + (l2 + l3)J2 ∧ J3] (dz + P ) . (3.7)
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3.1.1 G = 0

We first consider the local solutions with zero three-form flux, G = 0, that were presented

in section 6.1 of [8]. We will show that there are an infinite number of globally defined

solutions with appropriately quantised five-form flux and we will calculate the central

charges of the dual d = 2 (0, 2) SCFTs.

It was shown in [8] that the master equation (1.1) is solved if (l1, l2, l3)=(l1,− l1
1+l1

, 1)

with l1 ∈ [−1/2, 0]. When l1 = 0 we obtain the well known AdS3 × S3 × T 4 solution.

We therefore restrict to l1 ∈ [−1/2, 0) so that the six-dimensional Kähler manifold is

Σg × S2
1 × S2

2 , where Σg is a Riemann surface with genus g > 1.

We now examine the conditions required for Y7 to be a well defined U(1) fibration over

Σg ×S2
1 ×S2

2 . If we let the period of the coordinate z be 2πl then we require that l−1P be

a bona-fide U(1) connection. This is guaranteed if the integral of l−1dP/(2π) over a basis

of two cycles on Σg × S2
1 × S2

2 are all integers. Taking the obvious basis, we conclude that

we should take z to have period 4π and then the periods are (1 − g, 1, 1).

We now turn to the five-form. We first observe that this is a globally defined five-form

on Y7. To ensure that we have a good solution of type IIB string theory, we demand that

the five-form flux is properly quantised:

N(D) =
1

(2πls)4gs

∫

D
F5 ∈ Z (3.8)

for any five-cycle D ∈ H5(Y7,Z). A basis for the free part of H5(Y7,Z) is obtained by

taking the U(1) fibration over a basis of four-cycles on the base Σg × S2 × S2. Let D1, D2

and D3 denote the five cycles arising from the four-cycles Σg × S2
1 , Σg × S2

2 and S2
1 × S2

2 ,

respectively. Since the U(1) fibration is non-trivial, these five-cycles are not independent

in homology and we have [D1] + [D2] + (1 − g)[D3] = 0. Calculating the N(Di) we then

deduce that for them to be all integers, l1 must be rational, l1 = s/t and

L4

πgsl4s
=
s

h
N (3.9)

where h = hcf(t, (g − 1)). Indeed, we then find that

N(D1) = −s(1 − g)

h
N

N(D2) =
(s+ t)(1 − g)

h
N

N(D3) = − t

h
N . (3.10)

Clearly we have N(D1) + N(D2) + (1 − g)N(D3) = 0 which corresponds to the relation

amongst the five-cycles mentioned above.

We have thus established that there is an infinite class of solutions labelled by rational

l1 = s/t ∈ [−1/2, 0), each of which gives rise to a d = 2 (0, 2) SCFT. The central charge of

the SCFTs is given by

c =
3RAdS3

2G(3)
(3.11)
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where G(3) is the three-dimensional Newton’s constant and RAdS3 is radius of the AdS3

space. In our conventions the type IIB supergravity Lagrangian has the form

1

(2π)7g2
s l

8
s

√

−detgR+ . . . (3.12)

and we calculate that

c = 6
(g − 1)(s2 + st+ t2)

h2
N2 . (3.13)

Note that for the special case of s = 1, t = −2 we have (l1, l2, l3) = (−1/2, 1, 1): this is a

case whose central charge was already calculated in [30] (substitute M = 8, m = 2 into

equation (6.14) of that reference).

3.1.2 G 6= 0

We now turn to the construction of solutions with non-vanishing three-form flux. In order

to find a suitable three-form flux G we will demand that the product of the KE spaces

includes a T 2 factor, l3 = 0. We then take the three-form to be given by

1

L2
G = dū ∧ [m1J1 +m2J2] (3.14)

where u is a complex coordinate on the T 2 and m1,m2 are constant. This is closed and is

also a (1, 2) form on the Kähler space. In order that it is primitive we must set m1 = −m2.

Without loss of generality we take m1 > 0. It just remains to solve the master equation (2.5)

which gives

l1l2 = 4m2
1 . (3.15)

Recalling the expression for the warp factor, (3.5) (with l3 = 0), which must be positive, we

deduce that li > 0 and in particular our six-dimensional Kähler space must be S2
1×S2

2×T 2.

After a possible rescaling we can take l2 = 1. The five-form flux is given by (3.6) and (3.7)

with l3 = 0.

To analyse this solution further, it is convenient to perform successive T-dualities on

the two legs of the T 2 (which we take to be square). Using the formulae in appendix B,

we are led to the following type IIB solution2

1

L2
ds2 = ds2(AdS3) +

a+ 1

4a
ds2(S2

1) +
a+ 1

4
ds2(S2

2)

+
1

4
(dz + P1 + P2)

2 +
a

4

(

du1 − 1

a
P1 + P2

)2

+ (du2)2

1

L2
F3 = 2V ol(AdS3)+

1

4
(R1+R2)(dz+P1+P2)−

a

4

(

1

a
R1−R2

)(

du1− 1

a
P1+P2

)

e2φ = 1 . (3.16)

Note that here (unlike above) the metrics on the two-spheres have unit radius and a = l1/l2.

Introducing the coordinates ψ1 = (a/(1+a))(z − y) and ψ2 = (1/(1+a))(z +ay) and then

2To obtain the solution in this form, we rescaled the u1 coordinate, u1
→ u1(m1/l2), we set the dilaton

to zero by shifting the dilaton and rescaling F3, and we also absorbed the warp factor into L2.
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completing the squares using the ψi we are led to

1

L2
ds2 = ds2(AdS3) +

a+ 1

a
ds2(S3

1) + (a+ 1)ds2(S3
2) + (du2)2

1

L2
F3 = 2V ol(AdS3) +

2(a+ 1)

a
V ol(S3

1) + 2(a+ 1)V ol(S3
2) (3.17)

where ds2(S3
i ) are the round metrics on unit radius three spheres. This is the well known

AdS3 × S3 × S3 × S1 solution of type IIB supergravity (see [24 – 27]). Note that this so-

lution is dual to a d = 2 SCFT with (4, 4) supersymmetry: when we T-dualise back the

configuration with G 6= 0 we will possibly break some of the supersymmetry: our construc-

tion guarantees that there is at least (0, 2) supersymmetry, but we haven’t checked if more

supersymmetry is preserved.

3.2 D = 11

We briefly consider similar constructions of AdS2 solutions of D = 11 supergravity. The

metric ds2(Y9) appearing in (2.6) is given by

ds2(Y9) = (dz + P )2 + e−3A
4
∑

i=1

ds2(KE
(i)
2 ) (3.18)

and the warp factor is given by

e−3A =
4
∑

i=1

li . (3.19)

The four form flux is

G4 = V ol(AdS2) ∧ F2 + F4 (3.20)

with

F2 =
2

∑4
i=1 li

[(l1 + l2 + l3)J1 + (l1 + l3 + l4)J2 + (l1 + l2 + l4)J3 + (l1 + l2 + l3)J4]

F4 =
∑

i,j

mij J
i ∧ Jj (3.21)

where the entries of the symmetric matrix m are constants and the diagonal entries are

zero. Clearly F4 is a (2, 2) form. Demanding that it is primitive implies that

m12 = m34, m13 = m24, m14 = m23 , (3.22)

and hence F is self dual, and

m12 +m13 +m14 = 0 . (3.23)

Finally, the master equation (2.10) now implies that

l1l2 + l1l3 + l1l4 + l2l3 + l2l4 + l3l4 = 2[(m12)
2 + (m13)

2 + (m14)
2] . (3.24)

In the special case that one has a T 2 factor, say l4 = 0, one might wonder if one can

get a type IIB AdS3 solution after dimensional reduction and T-duality. Following the

discussion at the end of section 2, in order to get an AdS3 factor one needs that mi4 = 0

for all i. This implies all the mij = 0 and one returns to the cases analysed in [8].

– 10 –



J
H
E
P
0
9
(
2
0
0
8
)
0
2
1

4. Fibration constructions using KE spaces: type IIB solutions

In this section we will construct new AdS3 solutions of type IIB supergravity both with

G = 0 and G 6= 0. For both cases we will take the local six-dimensional dimensional

Kähler metric, ds26, to be the product of T 2 with a four dimensional local Kähler metric

which is constructed using the line bundle over a two dimensional Kähler Einstein space,

which we take to be an S2. The construction of such Kähler spaces is very similar to the

construction in section 3 of [8] which in turn was inspired by [31]. Using this construction

we take G to be the wedge product of a (0, 1) form on the T 2 with a (1, 1) form on the

four-dimensional Kähler space. We have presented a few details of the derivation of these

solutions in appendix C.

The metric of type IIB supergravity is given by

1

L2
ds2 =

β

y1/2
[ds2(AdS3) + ds2(Y7)] (4.1)

where L is an arbitrary length scale,

ds2(Y7) =
β2 − 1 + 2y −Q2y2

4β2
Dz2 +

U(y)

4(β2 − 1 + 2y −Q2y2)
Dψ2 +

dy2

4β2y2U(y)

+
1

β2
ds2(S2) +

y

β2
ds2(T 2) (4.2)

with Dψ = dψ + 2V , dV = 2JS2 and the round metric on S2, ds2(S2), is normalised so

that RS2 = 4JS2 . We also have

Dz = dz − g(y)Dψ (4.3)

with

g(y) =
y(1 −Q2y)

β2 − 1 + 2y −Q2y2
(4.4)

and

U(y) = 1 − 1

β2
(1 − y)2 −Q2y2 (4.5)

where β,Q are positive constants.

The self-dual five-form can be written

F5 = AdS3 ∧ F2 + ω5 (4.6)

with

1

L4
F2 =

β2(1 −Q2y)

2y(β2 − 1 + 2y −Q2y2)
dy ∧Dψ +

β2

2y2
dy ∧Dz + 2JS2 + 2V ol(T 2) (4.7)

and

1

L4
ω5 = −y(1 −Q2y)

β2
V ol(T 2) ∧ JS2 ∧Dz +

U(y)

(β2 − 1 + 2y −Q2y2)
V ol(T 2) ∧ JS2 ∧Dψ

− 1

4β2y2
dy ∧Dψ ∧ JS2 ∧Dz − 1

4β2
V ol(T 2) ∧ dy ∧Dψ ∧Dz . (4.8)
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If we introduce a complex coordinate u = u1 + iu2 on the T 2 with ds2(T 2) = dudū, we can

write the three-form flux as

1

L2
G =

Q

β
dū ∧

[

(1 − g)

2
dy ∧Dψ − 1

2
dy ∧Dz + 2yJS2

]

. (4.9)

We now investigate how to restrict the parameters (β,Q) and choose suitable ranges

of the coordinates so that these local solutions can be extended to provide good globally

defined solutions. In section 4.1, for G = 0, we show that there are an infinite number of

solutions of type IIB string theory, labelled by a pair of positive relatively prime integers,

p, q, and two integers M,N where Y7 has topology S3 × S2 × T 2. The five-form flux is

properly quantised an we also calculate the central charge of the corresponding dual CFTs.

In section 4.2, for G 6= 0, we show that there is a similar infinite class of AdS3 solutions

of type IIB supergravity, but the analysis of the flux quantisation will be studied in [29].

In section 4.3 we show that after two T-dualites and an S-duality all of these solutions get

transformed into type IIB solutions with only NS fields being non-trivial.

4.1 Type IIB solutions with G = 0

Setting Q = 0 so that

U(y) = 1 − 1

β2
(1 − y)2 (4.10)

we choose

y1 ≤ y ≤ y2 (4.11)

where yi are two positive distinct roots of U . The roots of U are given by

y1 = 1 − β, y2 = 1 + β (4.12)

and we therefore choose 0 < β < 1.

We want to argue, after suitable further restrictions, that Y7 = M5×T 2 is the product

of a two-torus with a five manifold M5, parametrised by z, y, ψ and the round S2. More

precisely the manifold M5 will be a good circle fibration, with the fibre coordinate labelled

by z, over a four-dimensional base manifold, B4, parametrised by y, ψ and the round S2.

The analysis is very similar to that for the five-dimensional Sasaki-Einstein metrics of [32]

(for further dicussion see [33]).

We first observe that if we choose the period of ψ to be 2π, then y, ψ parametrise a

smooth two-sphere (in particular, one can check that there are no conical singularities at

the poles y = y1 and y = y2) and that B4 is a smooth manifold which is an S2 bundle over

the round S2. In fact, topologically, B4 = S2×S2. To construct M5 as a circle bundle over

B4, we let z be periodic with period 2πl. We next observe that the norm of the Killing

vector ∂z is non-vanishing and so the size of the S1 fibre doesn’t degenerate. If we write

Dz = dz − A, we require that l−1A is a connection on a bona fide U(1) fibration. This

is guaranteed if the corresponding first Chern class l−1dA lies in the integer cohomology

H2
deRahm(B4,Z). It is straightforward to first check that l−1dA is indeed a globally defined

two-form on B4. We next need to check that periods are integral. A basis for the free part
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of the homology on B4 is given by Σf , the (y, ψ) two-sphere fibre at a point on the round

S2, and Σ1, Σ2, the two-spheres located at the poles y = y1, y = y2, respectively. We note

that we have the relation Σ1 = Σ2 − 2Σf in homology. If we denote the periods for Σf and

Σ2 to be integers −q and p, respectively, we conclude that must have

g(y2) − g(y1) = −lq

g(y2) =
lp

2
. (4.13)

We note that the period for Σ1 is then p + 2q, consistent with the relation between the

two-cycles noted above. These conditions are satisfied if

β =
q

p+ q

l =
2(p+ q)

p(p+ 2q)
(4.14)

with p, q > 0. We choose p and q to be relatively prime and then Y7 is the product of T 2

with a simply connected manifold M5. By following the argument in [32] we conclude that

topologically M5 is S2 × S3.

Recalling that the circle bundle (parametrised by z) is trivial over the two cycle qΣ2 +

pΣf we conclude that setting z to be constant, qΣ2 + pΣf generates H2(M5,Z). We also

observe that M5 has three obvious three-cycles: E1 and E2 obtained by fixing y = y1 or

y = y2, i.e. the circle bundle over Σ1 and Σ2, and the three-cycle E3 obtained by fixing

a point on the round S2, i.e. the circle bundle over Σf . If we let E be the generator of

H3(M5,Z) we have E1 = −pE, E2 = −(p + 2q)E and E3 = −qE. The generator E can

be obtained, for example, as the linear combination E = e1E1 + e2E3 where e1 and e2 are

integers satisfying e1p+ e2q = −1.

At this stage we have shown that for each pair of relatively prime positive integers,

(p, q), we have a regular manifold Y7 = M5 × T 2 with M5 = S2 × S3. In order to get a

good solution of type IIB string theory we now demand that the five-form flux is properly

quantised:

N(D) =
1

(2πls)4gs

∫

D
F5 ∈ Z (4.15)

for any five-cycle D ∈ H5(Y7,Z). There are two independent five-cycles, M5 at a fixed point

on T 2 and S3×T 2. For the latter, the S3 factor is the generator E of H3(M5,Z), at a fixed

point on the T 2. It is illuminating to calculate the flux through the five-cycles Ei × T 2,

where the Ei are the three-cycles on M5 introduced in the last paragraph. After setting

L4

4πgsl4s
=
qp2(p+ 2q)2

(p+ q)4
N

V ol(T 2) = π
q(p+ q)2

p(p+ 2q)

M

N
(4.16)
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where M and N are integers, we find that

1

(2πls)4gs

∫

M5

F5 = −N

1

(2πls)4gs

∫

E1×T 2

F5 = −pM

1

(2πls)4gs

∫

E2×T 2

F5 = −(p+ 2q)M

1

(2πls)4gs

∫

E3×T 2

F5 = −qM . (4.17)

We see that the results are consistent with the relations in homology between the three-

cycles Ei on M5 that we noted above: in particular the five-form flux through the cycle

E × T 2 is M .

We are now in a position to calculate the central charge of the corresponding dual

d = 2 (0, 2) SCFT. Using (3.11) and (3.12) we find that

c = 6
pq2(p+ 2q)NM

(p+ q)2
. (4.18)

4.2 Type IIB solutions with G 6= 0

Let us now consider the solutions with Q 6= 0 and hence non-vanishing G. The roots of U

are now given by

y1,2 =
1 ∓ β

√

1 +Q2(β2 − 1)

1 +Q2β2
(4.19)

and in order that we have two positive distinct roots, y2 > y1 > 0 we demand that

0 < β2 < 1, 0 ≤ Q2 <
1

1 − β2
. (4.20)

We will again argue that Y7 = M5 × T 2 with M5 a circle fibration, with the fibre

coordinate labelled by z, over a four-dimensional base manifold, B4, parametrised by y, ψ

and the round S2. To ensure that y, ψ parametrise a two-sphere, remarkably, it is again

sufficient to choose ψ to have period 2π. This again leads to a regular B4, which is again

topologically S2×S2. Following the logic of the last subsection, and calculating the periods

of l−1dA/(2π), to ensure that we have a good circle fibration over B4 we now impose

g(y2) − g(y1) = −lq ≡ −(lp)/X

g(y2) =
lp

2
(4.21)

for relatively prime integers p and q and we have defined X = p/q.

Let us first consider Q 6= 1. If X > 0 we choose Q < 1 and if −1 < X < 0 we choose

Q > 1 (other choices for X lead to the same solutions). We have

β2 =
1 −Q2

(1 +X)2 −Q2

l =
2((1 +X)2 −Q2)

p(2 +X)(1 +X)
(4.22)
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and

y1 =
X(1 +X +Q2)

(1 +X)2 −Q4

y2 =
(2 +X)(1 +X −Q2)

(1 +X)2 −Q4
. (4.23)

Topologically M5 = S2 × S3. For future reference, we note that as in the last subsection,

the generator of H2(MZ) is given by qΣ2 + pΣf at fixed z. Also as in the last subsec-

tion, M5 has three natural three-cycles Ei and the generator E of H3(M5,Z), is a linear

combination of them.

For Q = 1 we observe that

y1 =
1 − β2

1 + β2
, y2 = 1 . (4.24)

We further observe that g(y2) = 0 and hence we just need to demand that the period of

l−1dA/(2π) over Σf , the two sphere fibre parametrised by y, ψ, is quantised which can be

achieved by choosing

l =
2

1 − β2
. (4.25)

For Q = 1, the topology of M5 is again S2 × S3, but the details are slightly different,

since the z circle is only fibred over Σf . For future reference, we can take Σ2 to generate

H2(M5,Z) and similarly, we can take the z circle fibred over Σf to represent H3(M5,Z).

We have now shown that it is possible to switch on the three-form flux and obtain

infinite classes of regular geometries. Furthermore, we observe that the five-form and the

three-form are globally defined on Y7.

In order to find good solutions of string theory we need to ensure that the three-form

is suitably quantised. Writing G = −dB − idC(2) (since the axion and dilaton are zero),

we need to demand that

1

(2πls)2gs

∫

dC(2) ∈ Z

1

(2πls)2

∫

dB ∈ Z . (4.26)

Due to the Bianchi identity

dF5 =
i

2
G ∧G∗ (4.27)

we also need to ensure that corresponding Page charges (see e.g. [34, 35]) are quantised.

We will not carry out this analysis here, but an equivalent analysis will be carried out

in [29] using the results of the next subsection.

4.3 T-dual solutions

After carrying out T-dualities along each of the two legs of the T 2, using the formulae in ap-

pendix B, we arrive at the following type IIB solutions. The string frame metric is given by

1

L̄2
ds2σ =

β

y1/2
[ds2(AdS3) + ds2(X7)] (4.28)
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where

ds2(X7) =
β2 − 1 + 2y −Q2y2

4β2
Dz2 +

U(y)

4(β2 − 1 + 2y −Q2y2)
Dψ2 +

dy2

4β2y2U(y)

+
1

β2
ds2(S2) + (du1 − Qy

2β
[(1 − g)Dψ −Dz])2 + (du2)2 . (4.29)

The dilaton is given by

e2φ =
β2

y
(4.30)

and the RR three-form field strength is

1

L̄2
dC(2) = − 1

4β2
dy ∧Dψ ∧Dz − y

β2
J ∧Dz + [

1 − yg

β2
]J ∧Dψ

+
Q

2β
du1 ∧ [dy ∧Dz − 4yJ − (1 − g)dy ∧Dψ] + 2V ol(AdS3) . (4.31)

Note that L̄ is an arbitrary length scale that will be fixed by considering quantisation of

the flux.

After a further S-duality transformation we obtain AdS3 solutions with only NS fields

non-vanishing, but we will continue to work with the above solution.

For these solutions to be good solutions of type IIB string theory we need to ensure

that the metric extends to a metric on a globally defined manifold X7 and that both the

electric and magnetic RR three-form charges are properly quantised:

n1 =
1

(2πls)6gs

∫

X7

∗dC(2) ∈ Z (4.32)

and
1

(2πls)2gs

∫

T
dC(2) ∈ Z (4.33)

when integrated over any three-cycle T ∈ H3(X7,Z).

It is useful to note that since

1

L̄6
∗ dC(2) =

1

4β2y2
J ∧ dy ∧Dψ ∧Dz ∧ du1 ∧ du2 + V ol(AdS3) ∧ (. . . ) (4.34)

we have

n1 =

(

L̄

ls

)6
l

gs64π3β2
∆u1∆u2 y2 − y1

y1y2
. (4.35)

Thus, for any good solution of type IIB string theory, the central charge can then be written

c = 6n1

(

L̄

ls

)2
1

gs
. (4.36)

To get the explicit expression we need the values of ∆u1, ∆u2 and L̄2. In this paper we will

only analyse this further for the case of Q = 0, recovering results compatible with those of

the last subsection. The analysis for the case of Q 6= 0 will be carried out in [29].
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4.3.1 Q = 0

When Q = 0, we first observe that ds2(X7) is precisely the same as ds2(Y7) in (4.2). In

section 4.1 we showed that X7 = M5 × T 2 where M5 is a manifold parametrised by z, ψ, y

and the round S2 and the T 2 is parametrised by u1 and u2. Further M5 = S2 × S3.

Let us now consider the quantisation of the three-form on X7. After fixing a point on

the torus, the three-cycles Ei on M5, introduced in section 4.1, all give rise to three cycles

on X7. If we choose the length scale to satisfy

1

gs

(

L̄

ls

)2

=
pq2(p+ 2q)M

(p+ q)2
(4.37)

where M is an integer then we calculate

1

(2πls)2gs

∫

E1

dC(2) = −pM

1

(2πls)2gs

∫

E2

dC(2) = −(p+ 2q)M

1

(2πls)2gs

∫

E3

dC(2) = −qM . (4.38)

In particular we see that the flux through the generator of H3(X7,Z), the three-cycle E

introduced in section 4.1 at a fixed point on the torus, is M .

The expression (4.35) takes the more explicit form

n1 =

(

L̄

ls

)6
1

gs16π3
V ol(T 2)

(p + q)4

p2q(p + 2q)2
(4.39)

which, after substituting (4.37), provides a quantisation condition on V ol(T 2). For the cen-

tral charge, after substituting (4.37) into (4.36), we now recover the previous result (4.18)

(with N = n1), as expected.

The fluxes that we have activated, plus the amount of supersymmetry preserved, sug-

gests that the dual SCFT might arise by taking configurations of fundamental strings

intersecting NS fivebranes with the other four directions of the NS fivebranes wrapped on

a holomorphic four-cycles inside a Calabi-Yau four-fold.

4.3.2 Q 6= 0

A careful analysis of the topology of X7 and the quantisation of the three-form flux when

Q 6= 0 will be carried out in [29].

5. Fibration constructions using KE spaces: D = 11 solutions

In this section we will present new AdS2 solutions of D = 11 supergravity with magnetic

four-form flux switched on. We take the local eight-dimensional dimensional Kähler metric,

ds28, to be the product of T 2 with a six-dimensional local Kähler metric which is constructed

using the line bundle over a four dimensional Kähler Einstein space with positive curvature.

We have presented a few details of the derivation of these solutions in appendix D.
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The metric of D = 11 supergravity is given by

1

L2
ds2 =

1

64/3β2/3y4/3
[ds2(AdS2) + ds2(Y9)] (5.1)

where L is an arbitrary length scale,

ds2(Y9) = (1 − 8βy + 12βy2 − 4βQy4)Dz2 +
4βyU(y)

(1 − 8βy + 12βy2 − 4βQy4)
Dψ2

+
9β

yU(y)
dy2 + 36βyds2(KE+

4 ) + 36βy2ds2(T 2) (5.2)

with Dψ = dψ + 2V , dV = 2JS2 and the metric on the four-dimensional positively curved

Kähler-Einstein space, ds2(KE+
4 ), is normalised so that RKE = 6JKE. We also have

Dz = dz − g(y)Dψ (5.3)

with

g(y) = − 2βy(1 − 3y + 2Qy3)

1 − 8βy + 12βy2 − 4βQy3
(5.4)

and

U(y) = 1 − 9βy(1 − y)2 −Qy3 (5.5)

with β,Q constants.

Writing the four-form as

G4 = AdS2 ∧ F2 + F4 (5.6)

we have

1

L3
F2 = −JKE − 2

y3
dy ∧Dz +

2g

y3
dy ∧Dψ − i

2
du ∧ dū (5.7)

and

1

L3
F4 = 6β1/2Q

(

2JKE ∧ JKE +
1

3
[(1 − g)Dψ −Dz] ∧ JKE ∧ dy

−2iy2JKE ∧ du ∧ dū− iy

3
dy ∧ [(1 − g)Dψ −Dz] ∧ du ∧ dū

)

. (5.8)

We will not carry out a complete analysis of these solutions, but it is clear that there

are infinitely many new regular solutions. As in the last section, the task is to choose

appropriate values of the constants β,Q and ranges of the coordinates so that Y9 is a

U(1) fibration, with fibre parametrised by z, over an eight dimensional base manifold,

parametrised by ψ, y, the KE+
4 space and the two-torus. By choosing appropriate β,Q we

can restrict y to lie between two suitable roots of the cubic U = 0. One can then show that

if ψ has period 2π, then, remarkably, the eight-dimensional base manifold is a regular S2

bundle, with S2 parametrised by y, ψ, over KE+
4 ×T 2. Demanding that the U(1) fibration
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is well defined, for appropriately chosen period for z, will lead to additional restrictions on

the parameters, but it is clear that there will be infinite number of solutions. Finally, there

will be additional restrictions imposed by demanding that the four-form flux Page charges

are suitably quantised.

We conclude this section by pointing out that when F4 = 0, i.e. when Q = 0, if we

dimensionally reduce on one leg of the T 2 and T-dualise on the other, we obtain type IIB

AdS3 solutions as constructed in [28] (see appendix A and section 3.1 of [8]). However,

when F4 6= 0, while we still get type IIB solutions, because F4 has a term proportional to

the volume of the torus, the metric will no longer be a warped product of AdS3 with a

seven manifold.

6. Conclusions

We have analysed new general classes of supersymmetric AdS3 solutions of type IIB super-

gravity and AdS2 solutions of D = 11 supergravity, which are dual to SCFTs with (0, 2)

supersymmetry in d = 2 and supersymmetric quantum mechanics with two supercharges,

respectively. The constructions which generalise those of [1, 2] to allow for additional

fluxes, depend crucially on the “transgression terms” appearing in the Bianchi identities.

We also presented a rich set of new explicit examples using some constructions that

generalise those of [8]. For the type IIB AdS3 solutions we found an infinite class of solutions

with vanishing three-form flux in section 3.1 and determined the central charge of the dual

SCFT. In section 4 we presented a different class of explicit solutions of type IIB, with the

three-form flux labelled by Q. The solutions have a two-torus and after two T-dualities

and an S-duality we showed that the solutions can be written in terms of NS fields only.

For the case when Q = 0 we showed that the solutions extend to well defined solutions of

type IIB string theory and we calculated the corresponding central charge. The analysis

for the case of Q 6= 0 will be carried out in [29].

We also constructed analogous AdS2 solutions of D = 11 supergravity. It would

worthwhile carefully analysing the conditions required on the local solutions to give rise to

properly quantised solutions of M-theory.

Despite the richness of the constructions we have presented, it is clear that they can

be generalised still further. For example, the D = 11 solutions in section 5 are constructed

using a four-dimensional Kähler-Einstein manifold. For the special case when this is S2×S2

there are almost certainly generalisations when we allow the ratio of the curvatures of the

two S2’s to vary.

It remains an important outstanding problem to identify the dual SCFTs for all of these

examples. For the classes of type IIB AdS3 solutions that depend on NS fields only, it would

also be very interesting to construct the worldsheet CFT describing the type IIB solutions.

We also showed how the general class of AdS solutions can be analytically continued

to obtain general classes of 1/8 BPS bubble solutions with additional fluxes to the classes

of solutions considered in [8]. It would be interesting to study these further. For example,

the constructions of this paper can be used to obtain explicit solutions.
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A. AdS solutions

A.1 AdS3 solutions of type IIB supergravity

We will be interested in bosonic configurations of type IIB supergravity with constant axion

and dilaton. For simplicity we will mostly set the axion and dilaton to zero. We will use

the conventions for type IIB supergravity that were used in [36]. The conditions for such

a configuration to be supersymmetric read:

∇M ǫ−
1

96

(

ΓM
P1P2P3GP1P3P3 − 9ΓP1P2GMP1P2

)

ǫc

+
i

16 · 5!Γ
M1...M5FM1...M5ΓM ǫ = 0, (A.1)

ΓP1P2P3GP1P2P3ǫ = 0, (A.2)

where F5 is self-dual, F5 = ∗10F5 and the complex three-form G can be written3

G = ieφ/2
(

τdB − dC(2)
)

,

τ = C(0) + ie−φ. (A.3)

We have also chosen Γ11ǫ = −ǫ where Γ11 = Γ0 . . .Γ9. and we take ǫ0...9 = +1. To obtain

a supersymmetric solution to the equations of motion it is sufficient [36] to also impose

∇PGMNP = − i

6
FMNP1P2P3G

P1P2P3 (A.4)

GP1P2P3G
P1P2P3 = 0 (A.5)

dG = 0 (A.6)

dF =
i

2
G ∧G∗ (A.7)

and at most one component of the Einstein equations, which is automatically solved for

the classes of solutions we consider.

We now introduce the following ansatz

ds2 = e2Ads2 (AdS3) + ds27,

F5 = (1 + ∗10)V ol(AdS3) ∧ F2, (A.8)

3If one changes the sign of C(2) one gets the conventions used in [38] .
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as in [1], but generalised to include a closed three form G defined on the seven dimensional

space. We also demand that the Killing spinors are the same as those for the AdS3 solutions

with G = 0 that were analysed in [1].

For the gamma matrices we take

Γµ = σ1 ⊗ I8×8 ⊗ τµ, µ = 0, 1, 2

Γa = σ2 ⊗ γa ⊗ I2×2, a = 3, . . . , 9 (A.9)

where σi are Pauli matrices and we choose the three-dimensional and seven dimensional

gamma matrices τµ and γa, respectively, to satisfy

τ0τ1τ2 = −I2×2,
∏

a

γa = −iI8×8. (A.10)

For the Killing spinor ǫ we make the ansatz

ǫ = χ⊗ η ⊗ ψ(i)
n (A.11)

where χ is a constant spinor satisfying

σ3χ = χ (A.12)

ψ
(i)
n are Killing spinors on AdS3 satisfying

∇̂µψ
(i)
n =

n

2
τµψ

(i)
n , n = ±1, i = 1, 2, (A.13)

and η is a seven dimensional Dirac spinor. After substituting into (A.1) we find the following

system of equations

∇aη −
1

16
e−3A 6F2γaη = 0 (A.14)

(

n

2
e−A +

i

2
6∂A+

i

16
e−3A 6F2

)

η = 0 (A.15)

γp2p3G∗
ap2p3

η = 0 (A.16)

γp1p2p3Gp1p2p3η = 0. (A.17)

As shown in [1], by just using equations (A.14) and (A.15), the geometry and five form

flux are constrained to take the local form

ds2 = e2A

[

ds2 (AdS3) +
1

4
(dz + P )2 + e−4Ads26

]

F2 = 2nJ − 1

2
d
[

e4A (dz + P ]
)

(A.18)

where ∂z is a Killing vector, ds26 is a six dimensional Kähler metric with Kähler form J , Ricci

form given by R = n dP , scalar curvature R = 8e−4A and holomorphic three form Ω. This

result is obtained by analysing various bilinears in η. In particular we note that η†η = eA,
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Ω = e2AeinzηT γ(3)η and J = −eAiη†γ(2)η. Furthermore, K ≡ η†γ(1)η = (e2A/2)(dz + P ),

so that the corresponding dual vector is the Killing vector 2∂z. It is also useful to note

that Ψ ≡ ηT γ(4)η = −e−3Ae−nizK ∧ Ω.

We next argue that

iKG = 0. (A.19)

To see this we first multiply (A.16) by ηT γkγa and (A.17) by ηTγk to deduce that

Ωk
p1p2(iKG)p1p2 = 0, Ω̄k

p1p2(iKG)p1p2 = 0 . (A.20)

This shows that the (0, 2) and (0, 2) pieces of iKG vanish. Next multiplying (A.16) by

ηT γq1q2q3 we deduce that

Ω̄p
[q1q2

Gq3]pr = 0 . (A.21)

Letting q1 be just in the z direction we deduce that

Ω̄p
q1q2(iKG)pr = 0 (A.22)

showing that the (1, 1) piece of iKG also vanishes.

Since iKG = 0 we can now decompose G in terms of (p, q) forms on B6

G = G(1,2) +G(2,1) +G(3,0) +G(0,3).

From equations (A.16) and (A.17) we obtain

Ωp1p2p3Gp1p2p3 = 0, Ω̄p1p2
aGp1p2b = 0, (A.23)

implying that only the (1, 2) component of the three form G can be non-zero. From

equation (A.16) we have that

J ∧G = 0. (A.24)

Thus we conclude that supersymmetry implies that the (1, 2) form G is primitive. These

two properties when combined give the duality condition on the base B6

∗6G = iG, (A.25)

where we used the volume form

Vol6 =
1

6
J ∧ J ∧ J. (A.26)

We can now easily check that (A.4) and (A.5) are both satisfied.

Thus to ensure that all equations of motion are satisfied we just need to ensure

that (A.7) holds. Using (A.25) we find that (A.7) can be written as

1

16
J ∧R ∧R +

1

32
d ∗6 dR = −1

8
G ∧ ∗6G

∗, (A.27)

which may also be written as a scalar equation

�R− 1

2
R2 + RijRij +

2

3
GijkG∗

ijk = 0. (A.28)
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Note that in the main text we have fixed n to be +1. The solution preserves four

supersymmetries since i runs from 1 to 2 in theAdS3 Killing spinors ψ
(i)
n appearing in (A.11)

and η is a Dirac spinor. Two of these are Poincaré supersymmetries and two are special

conformal supersymmetries. Using horospherical coordinates, the Poincaré Killing spinors

on AdS3 are eigenvalues of the gamma matrix along the radial direction, say τ2 [37].

Observing that Γ01 = −I2×2 ⊗ I8×8 ⊗ τ2 we see that the two Poincaré supersymmetries

are eigenvalues of Γ01 with the same eigenvalue and hence the solutions are dual to SCFTs

with (0, 2) supersymmetry.

A.2 AdS2 solutions of D = 11 supergravity

The condition for a bosonic configuration of D = 11 supergravity to be supersymmetric

reads

δψM = ∇Mǫ+
1

288

[

ΓM
N1N2N3N4 − 8δN1

M ΓN2N3N4

]

G4N1N2N3N4ǫ = 0, (A.29)

where we are using the conventions of [39] and in particular Γ0...10 = 1 and ǫ0...10 = +1.

For the supersymmetric bosonic configurations we will be considering, in order that all

equations of motion are satisfied it is sufficient [39] to also just demand that

dG4 = 0,

d ∗11 G4 = −1

2
G4 ∧G4. (A.30)

Our AdS2 ansatz is

ds2 = e2Ads2 (AdS2) + ds29,

G4 = Vol(AdS2) ∧ F2 + F4, (A.31)

where F2 and F4 are closed forms defined on the nine dimensional space. For the gamma

matrices we perform the reduction

Γµ = τµ ⊗ I, µ = 0, 1

Γa = τ2 ⊗ γa, a = 2, . . . , 10 (A.32)

with τ and γ being real matrices and we use the conventions

τ0τ1τ2 = −1,
∏

a

γa = −1. (A.33)

In this representation we can make the ansatz for the eleven dimensional Majorana spinor

ǫ = χ(i)
n ⊗ η + c.c. (A.34)

where the η is a nine-dimensional Dirac spinors and the real three-dimensional spinor χ
(i)
n

satisfies

∇̂µχ
(i)
n =

in

2
τµτ2χ

(i)
n , i = ±1, n = ±1, (A.35)
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and can be taken to satisfy the orthogonality condition

(χ(i)
n )†τ2χ

(i)
n = 0. (A.36)

(which can be checked, for example, by explicitly calculating the spinors).

We now find the following system of equations
[

∇a +
1

24
e−2A

(

γ bc
a F2bc − 4F2abγ

b
)

]

η = 0 (A.37)

[

ine−A + γa∂aA− 1

6
e−2AγabF2ab

]

η = 0 (A.38)

γb1b2b3F4ab1b2b3η = 0. (A.39)

Using the results of [2] one can show that equations (A.37) and (A.38) imply that the

metric and the two form flux are constrained to be of the form

ds2 = e2A
[

ds2 (AdS2) + (dz + P )2 + e−3Ads28

]

, (A.40)

F2 = nJ + d
[

e3A (dz + P )
]

, (A.41)

where R = −ndP and ds28 is Kähler with Kähler form J , Ricci potential given by P and

scalar curvature given by R = 2e−3A.

The constraint (A.39) implies that the only non-zero part of the magnetic component

F4 is a (2, 2) and primitive form with no non-zero components along the z direction:

J ∧ F4 = 0, (A.42)

iKF4 = 0. (A.43)

Here K is the one-form constructed out of the nine dimensional bilinears K = η†γ(1)η =

e2A (dz + P ) whose dual is the Killing vector ∂z. Note that these conditions imply that

the four form is also self-dual with respect to ds28:

∗8F4 = F4. (A.44)

Using that the D = 11 epsilon tensor is given by ǫ = −e−AV ol(AdS2)(dz + P )J4

4! , we find

that the equation of motion for the four form (A.30) implies that

J2 ∧R ∧R + d ∗8 dR = F4 ∧ F4. (A.45)

which may also be written as a scalar equation

�R− 1

2
R2 + RijRij +

1

4!
FijklF

ijk = 0. (A.46)

B. T-duality

We consider a type IIB solution with a square two-torus, parametrised by u1 and u2, of

the form

ds2 = e2A
[

ds2(AdS3) + ds2(M5) + Σ((du1)2 + (du2)2)
]

F5 = f5 + f3 ∧ du1 ∧ du2
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G = (du1 − idu2) ∧ dv
φ = 0, C(0) = 0 (B.1)

where f5, f3, v and ds2(M5) have no dependence on the coordinates ui. Using the formulae

in, for example, [40] we can T-dualise on the u1 direction and then the u2 direction to get

the following type IIB solution

ds2σ = e2A
[

ds2(AdS3) + ds2(M5)
]

+
1

Σe2A

[

(du1 − v)2 + (du2)2
]

dC(2) = f3 − dv ∧ (du1 − v)

e2φ =
1

Σ2e4A
(B.2)

where the metric, here, is written in the string frame.

C. Type IIB solutions from fibrations over S
2

× T
2

Consider the following ansatz for a six dimensional Kähler metric

ds26 =
dx2

4x3U(x)
+
U(x)

x
Dφ2 +

1

x
ds2

(

S2
)

+ du dū, (C.1)

where Dφ = dφ + V , dV = 2JS2 , the S2 is normalised so that RS2 = 4JS2 and we have

introduced a complex coordinate u = u1 + iu2 for a T 2 factor. In this case the Kähler form

J and the (3, 0) form Ω read

J = − 1

2x2
dx ∧Dφ+

1

x
JS2 +

i

2
du ∧ dū,

Ω = e2iφ

[

− 1

2x2
√
U
dx+ i

√
U

x
Dφ

]

∧ ΩS2 ∧ du. (C.2)

We have dΩ = iP ∧ Ω where P is the Ricci form given by

P = fDφ, f = 2(1 − U) + xU ′. (C.3)

It is easy to calculate the Ricci form, given by R = dP , and we record that the Ricci scalar

is given by

R = 4xf − 4x2f ′. (C.4)

For the three form G we make the simple ansatz that it is the wedge product of dū with

a primitive (1, 1) form on the four-dimensional Kähler space parametrised by x, φ and the

S2. This leads us to consider

G = dū ∧ d [qxDφ] . (C.5)

If we now substitute into (2.5), after integrating once, we are led to the following

differential equation for U :

2f2 + U R′ + 8q2x2 = constant. (C.6)
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We look for polynomial solutions to this equation by considering the ansatz U(x) = 1 +
∑2

i=0 aix
i. This implies that R = −8a0x and in order to have R > 0 we choose a0 = −1/β2.

A little calculation shows that U takes the form

U(x) = 1 − 1

β2

(

1 − a1β
2

2
x

)2

− q2β2x2. (C.7)

It is now straightforward to assemble the full ten-dimensional solution using (2.1)–(2.4).

It is convenient to make the following rescalings

y =
a1β

2

2
x, Q =

2

a1β
q, ũ =

√
2

β
√
a1

u . (C.8)

Furthermore we also perform a simultaneous scaling of the ten-dimensional metric and the

three-form by a factor of
√

2
β
√

a1
and the five-form by a factor of 2

β2a1
(which indeed transforms

a solution to another solution). Finally, it is very helpful to perform the coordinate change

φ = (ψ−z)/2 and this then leads to the type IIB solutions as recorded in the main text, al-

though we note that we have dropped the tildes form the coordinates on the torus for clarity.

D. D = 11 solutions from fibrations over KE
+

4 × T
2

Consider the following ansatz for an eight dimensional Kähler metric

ds28 =
dx2

4x3U(x)
+
U(x)

x
Dφ2 +

1

x
ds2

(

KE+
4

)

+ du dū, (D.1)

where Dφ = dφ+ V , dV = 2JKE, the Kähler-Einstein four metric with positive curvature,

ds2(KE+
4 ), is normalised so that RS2 = 6JS2 and u = u1 + iu2 is a complex coordinate for

a T 2 factor. In this case the Kähler form J and the (4, 0) form Ω read

J = − 1

2x2
dx ∧Dφ+

1

x
JKE +

i

2
du ∧ dū,

Ω = e3iφ

[

− 1

2x5/2
√
U
dx+ i

√
U

x3/2
Dφ

]

∧ ΩKE ∧ du. (D.2)

We have dΩ = iP ∧ Ω where P is the Ricci form given by

P = fDφ, f = 3(1 − U) + xU ′. (D.3)

It is easy to calculate the Ricci form, given by R = dP , and we record that the Ricci scalar

is given by

R = 8xf − 4x2f ′. (D.4)

For the magnetic four form, F4, we choose the ansatz:

F4 = A2 ∧
(

J6 −
i

2
du ∧ dū

)

= A2 ∧
(

− 1

2x2
dx ∧Dφ+

1

x
JKE − i

2
du ∧ dū

)

(D.5)
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where J6 is the Kähler form on the six space excluding the torus. We clearly have that F4

is (2, 2) and is closed provided that the two-form A2 is (1, 1) and closed. A suitable ansatz

is A2 = d[Φ(x)Dφ] and we find that F4 is primitive provided that Φ = qx2 for an arbitrary

constant q. We thus have

F4 = d[qx2Dφ] ∧
(

− 1

2x2
dx ∧Dφ+

1

x
JKE − i

2
du ∧ dū

)

. (D.6)

If we now substitute into (2.10), after integrating once, we are led to the following

differential equation for U :

4f2 + U R′ + 4q2x4 = constant× x. (D.7)

We look for polynomial solutions to this equation by considering the ansatz U(x) =
∑3

i=0 aix
i. We find two classes of solutions, one with a0 = 1 and the other with a0 = 3.

Since we are interested here in AdS2 solutions, we only consider the solution with a0 = 1

and we have

U(x) = 1 + a1x

(

1 +
a2

2a1
x

)2

+
q2

4a1
x3 . (D.8)

Since R = −8a1x
2, we demand that a1 < 0.

It is now straightforward to assemble the full eleven-dimensional solution using (2.6)–

(2.9). It is convenient to make the following rescalings

y =
−a2

2a1
x, Q =

2a2
1

a3
2

q2, ũ =

√
−2a1√
a2

u . (D.9)

We also define β =
2a2

1
9a2

. Furthermore we also perform a simultaneous scaling of the eleven-

dimensional metric by a factor of
(

2(−a1)
a2

)2/3
and the four-form by a factor of 2(−a1)

a2
(which

indeed transforms a solution to another solution). Finally, it is very helpful to perform the

coordinate change φ = (ψ − z)/3 and this then leads to the D = 11 solutions as recorded

in the main text, although we note that we have dropped the tildes form the coordinates

on the torus for clarity.
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